plexes $\left[\mathrm{Mn}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{6} R\right)(\mathrm{CO})_{3}\right], \quad R=\mathrm{H}, \quad \mathrm{Ph}$ [2.17 (1) \AA] (Churchill \& Scholer, 1969), as well as with the distance of $2 \cdot 15(2) \AA$ in the neutral η^{5} cyclopentadienyl complex $\left[\mathrm{Mn}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right]$ (Berndt \& Marsh, 1963).

References

Berndt, A. F. \& Marsh, R. E. (1963). Acta Cryst. 16, 118-123.
Bernhardt, R. J., Wilmoth, M. A., Weers, J. J., LaBrush, D. M., Eyman, D. P. \& Huffman, J. C. (1986). Organometallics, 5, 883-888.
Calhoun, H. P. \& Trotter, J. (1974). J. Chem. Soc. Dalton Trans. pp. 377-381.
Churchill, M. R. \& Scholer, F. R. (1969). Inorg. Chem. 8, 1950-1955.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 54, 1891-1898.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Ittel, S. D., Whitney, J. F., Chung, Y. K., Williard, P. G. \& Sweigart, D. A. (1988). Organometallics, 7, 1323-1328.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Winkhaus, G., Pratt, L. \& Wilkinson, G. (1961). J. Chem. Soc. pp. 3807-3813.

Structures of Bis $\{N$-[1-(2-pyrrolyl)ethylidene]ethylaminato $\}$ zinc(II) and Bis\{ \boldsymbol{N}-[1-(2-pyrrolyl)ethylidene]ethylaminato\}copper(II)

By Masood Parvez
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA

and William J. Birdsall
Department of Chemistry, Albright College, Reading, PA 19603, USA
(Received 19 July 1989; accepted 7 November 1989)

Abstract

Zn}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\right]\), (1), $M_{r}=335 \cdot 75$, triclinic, $P \overline{1}, a=7.849$ (1), $b=9.783$ (1), $c=12.097$ (2) \AA, α $=77.12(1), \quad \beta=87.06(1), \quad \gamma=67.20(1)^{\circ}, \quad V=$ $834.1 \AA^{3}, Z=2, \quad D_{x}=1.337 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1.54184 \AA, \quad \mu=2.035 \mathrm{~mm}^{-1}, \quad F(000)=352, \quad T=$ 293 (1) K, $R=0.038$ for 2660 reflections with $I>3 \sigma(I) .\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\right]$, (2), $M_{r}=333 \cdot 92$, monoclinic, $P 2_{1} / c, \quad a=14.405$ (4),$\quad b=8.281$ (6), $\quad c=$ $14 \cdot 205$ (7) $\AA, \beta=104 \cdot 49(3)^{\circ}, V=1640 \cdot 6 \AA^{3}, Z=4$, $D_{x}=1.352 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $1.332 \mathrm{~mm}^{-1}, F(000)=700, T=293$ (1) K, $R=0.039$ for 1929 reflections with $I>3 \sigma(I)$. The geometry around the Zn atom in (1) is distorted tetrahedral with $\mathrm{Zn}-\mathrm{N}$ distances in the range 1.962 (2)2.041 (2) \AA and $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ cis angles involving N atoms of the same ligand 84.2 (1) and 84.1 (1) and trans angles in the range $118 \cdot 2(1)-129 \cdot 5(1)^{\circ}$. The Cu atom in (2) has distorted square-planar geometry with $\mathrm{Cu}-\mathrm{N}$ distances in the range 1.935 (3)2.000 (4) \AA and $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ cis angles 82.8 (2) and 83.0 (2) ${ }^{\circ}$ involving the N atoms of the same ligand and $102 \cdot 3$ (2) and 103.3 (2) ${ }^{\circ}$ involving N atoms of the two ligands; the trans angles are $152 \cdot 6(2)$ and $156 \cdot 0(2)^{\circ}$.

Introduction. We have recently reported the crystal structure of (2-acetylpyrolato)\{ N-[1-(2-pyrrolyl)ethylidene]ethylaminatojcopper(II), (3) (Parvez \& Birdsall, 1988), a mixed-ligand complex containing one ethylamine Schiff base and one 2-acetylpyrrole chelate per $\mathrm{Cu}^{\mathrm{II}}$ center. This compound formed upon spontaneous hydrolysis of bis\{N-[1-(2-pyrrolyl)ethylidene]ethylaminato\}copper(II), and exhibits a distorted square-planar geometry. The mixed-ligand nature of (3) is unusual, but bond angles and bond distances fall within the range reported for bisbidentate Schiff-base complexes of $\mathbf{Z n}^{11}$ (Kanters, Spek, Postma, van Stein \& van Koten, 1983), Co ${ }^{\text {II }}$ (Wei, 1972a), $\mathrm{Ni}^{\mathrm{II}}$ (Wei \& Einstein, 1972), and two modifications of $\mathrm{Cu}^{\mathrm{II}}$ with the same ligand (Wei, 1972b).

We have now synthesized bis\{N-[1-(2-pyrrolyl)ethylidene]ethylaminato\}zinc(II), (1) and bis $\{N$ - $11-(2-$ pyrrolyl)ethylidene]ethylaminato\}copper(II), (2). Compound (1) was prepared by published methods (Holm, Chakravorty \& Theriot, 1966; Yeh \& Barker, 1967). Compound (2) resulted from attempts to hydrolyze the second Schiff-base ligand on (3) to form a bis-bidentate 2 -acetylpyrrole $\mathrm{Cu}^{\mathrm{II}}$ product;
surprisingly, (3) decomposed upon hydrolysis and reformed as a bis-bidentate Schiff-base complex.

Experimental. For both structures, accurate cell constants and orientation matrices were obtained by least-squares refinement of the setting angles of 25 reflections in the range $10<\theta<15^{\circ}$ on EnrafNonius CAD-4 diffractometers using graphitemonochromatized $\mathrm{Cu} K \alpha$ and Mo $K \alpha$ radiation for (1) and (2), respectively. In each case intensities were collected by the $\omega / 2 \theta$ scan method. The stability of each crystal was monitored by measurement of three reflections at regular intervals; the data were corrected for decay by appropriate scaling. The data were corrected for Lorentz and polarization factors and for absorption (North, Phillips \& Mathews, 1968) for both structures. A summary of data collection and structure refinement parameters for both structures is given in Table 1.

The structures were solved by the heavy-atom method and refined by full-matrix least-squares calculations on F s, initially with isoptropic and finally with anisotropic temperature factors for the non-H atoms. At intermediate stages in the refinements, difference maps revealed all H atoms in both structures which were included in the subsequent rounds of calculations at fixed positions and with overall isotropic thermal parameters. Refinements converged with $R=0.038$ and 0.039 and $w R=0.064$ and 0.072 for (1) and (2), respectively. In the refinement cycles, weights were derived from the counting statistics. Scattering factors were those of Cromer \& Mann (1968) and Stewart, Davidson \& Simpson (1965) and allowance was made for anomalous dispersion (Cromer \& Liberman, 1970). The computer programs used were part of the Enraf-Nonius Structure Determination Package (B. A. Frenz \& Associates, Inc., 1985). The final fractional coordinates with e.s.d.'s are given in Table 2* and molecular dimensions are in Table 3. Figs. 1 and 2 show the ORTEPII (Johnson, 1976) drawings of the molecular structures of (1) and (2), respectively while the crystal packing diagrams are depicted in Figs. 3 and 4.

Discussion. The Zn atom in (1) is coordinated to two bidentate ligands and has a distorted tetrahedral geometry with two types of $\mathrm{Zn}-\mathrm{N}$ bond distances; significantly shorter bonds involve pyrrole N atoms $[1.962(2)$ and 1.971 (2) \AA] as compared with those involving ethylaminato N atoms [2.023 (2) and 2.041 (2) \AA]. These distances agree well with

[^0]Table 1. Summary of data collection and structure refinement parameters

	(1)	(2)
Crystal size (mm)	$0.20 \times 0.14 \times 0.32$	$0.27 \times 0.18 \times 0.32$
Radiation	$\mathrm{Cu} K \boldsymbol{\alpha}$	Mo $K \boldsymbol{\alpha}$
θ limits (${ }^{\circ}$)	5-70	2-26
Range of indices: h	0 to 9	0 to 17
k	-10 to 11	0 to 10
l	-14 to 14	-16 to 17
Scan width (${ }^{\circ}$)	$(0.75+0.14 \tan \theta)$	$(0.60+0.35 \tan \theta)$
Variable scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	1.8-8.2	0.75-3.3
Crystal decay (\%)	2.7	$4 \cdot 5$
Absorption coefficient: max.	0.9974	0.9977
min.	$0 \cdot 8241$	0.9229
Unique data measured	3153	3460
Observed data [$I>3 \sigma(I)$]	2660	1929
$R, w R$	0.038, 0.064	0.039, 0.072
Data/parameter ratio	10.4	7.5
(Δ / σ) max. in last cycle	<0.10	<0.15
Max. and min. $\Delta \rho\left(\mathrm{e}^{\AA}{ }^{3}\right)$	0.37, -0.24	0.25, -0.44
Weighting scheme	$1 /\left[\sigma^{2}(F)+0.080 F^{2}\right]$	$1 /\left[\sigma^{2}(F)+0.080 F^{2}\right]$
S	1.366	1.507

Table 2. Final fractional coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$B_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} B_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Compound (1)				
Zn	$0 \cdot 39257$ (4)	$0 \cdot 24483$ (3)	0.73215 (3)	4.721 (7)
N(1)	0.3717 (3)	0.4534 (2)	0.7235 (2)	5.06 (5)
N(2)	0.2915 (3)	0.3274 (2)	0.5682 (2)	4.46 (4)
N(3)	0.6117 (3)	0.0527 (2)	0.7676 (2)	4.92 (5)
N(4)	$0 \cdot 2700$ (3)	0.1308 (3)	0.8467 (2)	$5 \cdot 21$ (5)
C(1)	0.4020 (4)	0.5459 (3)	0.7817 (2)	6.00 (7)
C(2)	0.3605 (5)	0.6880 (3)	0.7139 (3)	6.42 (7)
C(3)	0.3035 (4)	0.6858 (3)	0.6076 (3)	5.74 (7)
C(4)	0.3125 (3)	0.5395 (3)	0.6159 (2)	$4 \cdot 60$ (5)
C(5)	0.2730 (3)	0.4680 (3)	0.5342 (2)	4.41 (5)
C(6)	0.2151 (4)	0.5567 (3)	0.4151 (2)	5.45 (7)
C(7)	0.2540 (4)	0.2467 (3)	0.4899 (2)	5.33 (6)
C(8)	0.2535 (5)	0.0979 (3)	0.5517 (3)	7.05 (8)
C(9)	0.7871 (4)	-0.0184 (4)	0.7394 (3)	5.99 (7)
C(10)	0.8517 (5)	-0.1704 (4)	0.7907 (3)	7.31 (9)
C(11)	0.7112 (5)	-0.1942 (3)	0.8515 (3)	6.78 (8)
C(12)	0.5633 (4)	-0.0560 (3)	0.8380 (2)	5.03 (6)
C(13)	0.3784 (4)	-0.0090 (3)	0.8797 (2)	$5 \cdot 17$ (5)
C(14)	0.3209 (5)	-0.1233 (3)	0.9595 (3)	6.91 (8)
C(15)	0.0796 (4)	0.1868 (4)	0.8865 (3)	7.53 (9)
C(16)	0.0027 (5)	$0 \cdot 3558$ (5)	0.8747 (3)	7.89 (9)
Compound (2)				
Cu	0.78557 (4)	0.48828 (6)	0.55091 (4)	3.96 (1)
N(1)	0.9072 (3)	0.4001 (5)	0.6223 (3)	3.9 (1)
N(2)	0.8637 (3)	0.6840 (5)	0.5478 (3)	$4 \cdot 1$ (1)
N(3)	0.6807 (3)	0.5101 (5)	0.4347 (3)	$5 \cdot 1$ (1)
N(4)	0.6914 (3)	0.3491 (5)	0.5954 (3)	$4 \cdot 7$ (1)
C(1)	0.9482 (4)	0.2610 (6)	0.6611 (4)	4.7 (1)
C(2)	1.0473 (4)	0.2765 (7)	0.6875 (4)	$5 \cdot 1$ (1)
C(3)	1.0681 (3)	0.4302 (7)	0.6614 (3)	$4 \cdot 7$ (1)
C(4)	0.9809 (3)	0.5050 (6)	0.6220 (3)	$4 \cdot 2$ (1)
C(5)	0.9535 (3)	0.6622 (6)	0.5820 (3)	$3 \cdot 7$ (1)
C(6)	1.0302 (4)	0.7864 (7)	0.5845 (4)	$5 \cdot 4$ (1)
C(7)	0.8246 (4)	0.8402 (6)	0.5074 (4)	$5 \cdot 7$ (1)
C(8)	0.7509 (5)	0.8964 (8)	0.5556 (5)	7.0 (2)
C(9)	0.6590 (4)	0.5765 (8)	0.3452 (4)	$6 \cdot 2$ (1)
C(10)	0.5696 (5)	0.5237 (8)	0.2932 (5)	$7 \cdot 1$ (2)
C(11)	0.5368 (4)	0.4183 (8)	0.3508 (5)	$6 \cdot 8$ (1)
C(12)	0.6059 (3)	0.4110 (6)	0.4399 (4)	4.9 (1)
C(13)	0.6137 (3)	0.3274 (6)	0.5293 (4)	$4 \cdot 8$ (1)
C(14)	0.5315 (4)	$0 \cdot 2230$ (7)	0.5398 (5)	6.7 (2)
C(15)	0.7067 (4)	02814 (7)	0.6929 (4)	6.2 (1)
C(16)	0.7191 (4)	$0 \cdot 4075$ (10)	0.7684 (4)	7.0 (2)

those reported for a closely related complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\right]$ (Kanters, Spek, Postma, van Stein \& van Koten, 1983). The bond distances and angles in the ligand are in excellent agreement with those

Table 3. Molecular dimensions with e.s.d.'s in parentheses for (1) and (2)

	(1)	(2)		(1)	(2)
$M-\mathrm{N}(1) \quad 1$	1.962 (2)	1.935 (3)	$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$	1.371 (4)	1.388 (7)
$M-\mathrm{N}(2) \quad 2$	2.041 (2)	1.980 (4)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$	1.390 (6)	1.380 (8)
M - $\mathrm{N}(3) \quad 1$	1.971 (2)	1.948 (4)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$	1.386 (5)	1.387 (7)
$M-\mathrm{N}(4) \quad 2$	2.023 (2)	2.000 (4)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$	1.439 (4)	1.436 (7)
$\mathrm{N}(1)-\mathrm{C}(1) \quad 1$	1.357 (4)	1.347 (6)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$	1.497 (3)	1.504 (7)
$\mathrm{N}(1)-\mathrm{C}(4) \quad 1$	1.374 (3)	1.373 (6)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$	1.482 (4)	1.476 (9)
$\mathrm{N}(2)-\mathrm{C}(5) \quad 1$	$1-297$ (3)	$1 \cdot 275$ (6)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$	$1 \cdot 376$ (5)	1.386 (8)
$\mathrm{N}(2)-\mathrm{C}(7) \quad 1$	1.467 (5)	1.469 (6)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$	$1 \cdot 360$ (6)	1.360 (10)
$\mathrm{N}(3)-\mathrm{C}(9) \quad 1$	$1 \cdot 346$ (3)	$1 \cdot 348$ (7)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$	$1 \cdot 381$ (4)	1.401 (7)
$\mathrm{N}(3)-\mathrm{C}(12) \quad 1$	1.370 (4)	$1 \cdot 371$ (7)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$	1.443 (4)	1.426 (8)
$\mathrm{N}(4)-\mathrm{C}(13) \quad 1$	1.282 (3)	$1 \cdot 282$ (6)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$	$1 \cdot 500$ (4)	1.503 (8)
$\mathrm{N}(4)-\mathrm{C}(15)-1$	1.475 (4)	1.458 (8)	$\mathrm{C}(15)-\mathrm{C}(16)-1$	1.499 (6)	1.475 (11)
	(1)	(2)		(1)	(2)
$\mathrm{N}(1)-M-\mathrm{N}(2)$	84.2 (1)	82.8 (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107 \cdot 7$ (4)	106.9 (4)
$\mathrm{N}(1)-M-\mathrm{N}(3)$	129.5 (2)	152.6 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$105 \cdot 7$ (2)	$106 \cdot 5$ (4)
$\mathrm{N}(1)-M-\mathrm{N}(4)$	125.5 (1)	102.3 (2)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	110.3 (3)	109.8 (4)
$\mathrm{N}(2)-M-\mathrm{N}(3)$	118.2 (1)	103.3 (2)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	117.9 (2)	116.0 (4)
$\mathrm{N}(2)-M-\mathrm{N}(4)$	120.0 (1)	156.0 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	131.8 (2)	$134 \cdot 1$ (5)
$\mathrm{N}(3)-M-\mathrm{N}(4)$	84.1 (1)	83.0 (2)	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	117.6 (3)	115.6 (4)
$M-\mathrm{N}(1)-\mathrm{C}(1)$	144.2 (2)	141.7 (3)	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	123.1 (3)	$125 \cdot 6$ (4)
$M-\mathrm{N}(1)-\mathrm{C}(4)$	$109 \cdot 8$ (2)	111.0 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.4 (2)	118.9 (4)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$106 \cdot 0$ (2)	$106 \cdot 5$ (4)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	110.8 (2)	110.3 (5)
$M-\mathrm{N}(2)-\mathrm{C}(5)$	110.4 (2)	113.9 (3)	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$110 \cdot 3$ (3)	109.8 (6)
$M-\mathrm{N}(2)-\mathrm{C}(7)$	128.8 (1)	124.4 (4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	106.8 (3)	$107 \cdot 3$ (5)
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(7)$	120.7 (2)	121.8 (4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 107.6 (3)	$107 \cdot 2$ (6)
$M-\mathrm{N}(3)-\mathrm{C}(9)$	143.7 (2)	141.7 (4)	$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	108.9 (3)	108.5 (5)
$M-\mathrm{N}(3)-\mathrm{C}(12)$	109.2 (2)	$110 \cdot 6$ (3)	$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	117.6 (2)	116.7 (4)
$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{C}(12)$	$106 \cdot 5$ (2)	$107 \cdot 1$ (4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 133.6 (3)	134.8 (5)
$M-\mathrm{N}(4)-\mathrm{C}(13)$	110.9 (2)	112.8 (4)	$\mathrm{N}(4)-\mathrm{C}(13)-\mathrm{C}(12)$	117.8 (2)	116.4 (5)
$M-\mathrm{N}(4)-\mathrm{C}(15)$	128.4 (2)	124.7 (3)	$\mathrm{N}(4)-\mathrm{C}(13)-\mathrm{C}(14)$	122.7 (2)	124.9 (5)
$\mathrm{C}(13)-\mathrm{N}(4)-\mathrm{C}(15)$) 120.6 (3)	122.7 (5)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 119.6 (3)	118.6 (4)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	110.4 (3)	110.4 (5)	$\mathrm{N}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	111.5 (3)	112.4 (5)

reported for similar complexes, e.g. $\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\right]$ (Wei, 1972a), $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\right]$ (Wei, 1972b) and $\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\right]$ (Wei \& Einstein, 1972).

The most notable change in the conversion of (3) to (2) is that cis pyrrole groups in (3) become trans in (2). Both structures have distorted square-planar geometries, but (2) deviates more from planarity than (3) with trans $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$ and $\mathrm{N}(2)-$ $\mathrm{Cu}-\mathrm{N}(4)$ angles of $152 \cdot 6(2)$ and $156.0(2)^{\circ}$, respectively, while (3) contains trans $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ and $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles of 169.5 (1) and $173.5(1)^{\circ}$, respectively. Decomposition and reformation of (3) to the trans pyrrole complex (2) occurs rather than the hydrolysis of (3) to a bis 2 -acetylpyrrole complex with cis pyrrole groups. Since (3) itself is a decomposition product of an unstable bis(ethylamine) Schiffbase adduct of 2 -acetylpyrrole, the unstable parent complex may undergo hydrolysis to a mixed-ligand product because of non-bonded interactions between ethyl groups on cis imine N atoms. Compound (3), therefore, can be viewed as the product of an unstable cis Schiff-base bidentate adduct, while compound (2) is a stable decomposition product of (3) containing trans bidentate Schiff-base ligands. The Zn adduct (1) is stable because strain between ethyl groups on imine N atoms is not a factor in this tetrahedral complex. Ligand bond distances and angles for (2) agree well with those reported for similar $\mathrm{Cu}^{\mathrm{II}}$ complexes containing tert-butylamine Schiff-base bidentate groups (Wei, 1972b).

Fig. 1. ORTEP drawing of the molecular structure of (1).

Fig. 2. ORTEP drawing of the molecular structure of (2).

Fig. 3. Stereoscopic view of the crystal packing diagram of (1).

Fig. 4. Stereoscopic view of the crystal packing diagram of (2).

References

B. A. Frenz \& Associates, Inc. (1985). SDP Structure Determination Package. College Station, Texas, USA, and EnrafNonius, Delft, The Netherlands.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Holm, R. H., Chakravorty, A. \& Theriot, L. J. (1966). Inorg. Chem. 5, 625-635.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Kanters, J. A., Spek, A. L., Postma, R., van Stein, G. C. \& van Koten, G. (1983). Acta Cryst. C39, 999-1001.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Parvez, M. \& Birdsall, W. J. (1988). Acta Cryst. C44, 1526-1528.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wei, C. H. (1972a). Inorg. Chem. 11, 1100-1105.
Wei, C. H. (1972b). Inorg. Chem. 11, 2315-2321.
Wei, C. H. \& Einstein, J. R. (1972). Acta Cryst. B28, 2591-2598.
Yeh, K. \& Barker, R. H. (1967). Inorg. Chem. 6, 830-833.

Acta Cryst. (1990). C46, 1437-1439

Structure of Bis(benzene-1,2-dithiolato)gold(IV)

By Grethe Rindorf and Niels Thorup
Structural Chemistry Group, Chemistry Department B, The Technical University of Denmark, DK-2800 Lyngby, Denmark

and Thomas Bjørnholm and Klaus Bechgaard
Department of General and Organic Chemistry, H. C. Ørsted Institute, DK-2100 Copenhagen Ø, Denmark
(Received 26 October 1989; accepted 1 December 1989)

Abstract

Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2}\right], \quad M_{r}=477 \cdot 44\), monoclinic, $P 2_{1} / n, a=12.435$ (2), $b=3.750$ (1), $c=14.495$ (1) \AA, $\beta=111.88(1)^{\circ}, \quad V=627.2(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.52 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $123.0 \mathrm{~cm}^{-1}, F(000)=446, T=298 \mathrm{~K}$. Final $R=$ 0.024 for 1167 observed reflections. Au has squareplanar coordination to four S atoms forming planar units which are regularly stacked along the b axis, which makes an angle of $18.5(1)^{\circ}$ with the normal of the complex. The average $\mathrm{Au}-\mathrm{S}$ distance is $2 \cdot 300$ (1) \AA. A weak superstructure is observed but has been ignored in the present analysis.

Introduction. The recent discoveries of superconductivity in (TTF) $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]_{2} \quad(\mathrm{TTF}=$ tetrathiafulvalene, \quad dmit $=4,5$-dimercapto-1,3-dithiole-2dithione) (Brossard, Ribault, Bousseau, Valade \& Cassoux, 1986) and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \quad\left[\mathrm{Ni}\left(\mathrm{dmit}_{2}\right]\right.$ (Kobayashi, Kim, Sasaki, Kato, Kobayashi, Moriyama, Nishio, Kajita \& Sasaki, 1987) have stimulated renewed interest in the structure and properties of related compounds containing a central metal atom ($\mathrm{Ni}, \mathrm{Pt}, \mathrm{Pd}$ or Au) bonded to four S atoms in a nearly square-planar coordination. Such compounds have previously been intensively studied because of their magnetic properties involving a spin-Peierls transition (see, for example, Bray, Interrante, Jacobs \& Bonner, 1983). The planar metal complexes, which
are often stacked in the crystal structure, may be charged or uncharged corresponding to different formal oxidation states of the metal atom. The present study deals with the neutral gold(IV) complex $\left[\mathrm{Au}(\mathrm{bdt})_{2}\right]^{0}(\mathrm{bdt}=$ benzene-1,2-dithiolato) which may be reduced to the anion $\left[\mathrm{Au}(\mathrm{bdt})_{2}\right]^{-}$corresponding to the well known oxidation state of +3 for Au. A similar compound formally containing gold(IV), bis(5,6-dihydro-1,4-dithiin-2,3-dithiolato)gold(IV) was reported earlier (Schultz, Wang, Soderholm, Sifter, Williams, Bechgaard \& Whangbo, 1987). This material exhibits a pronounced dimerization of the radicaloid gold(IV) species. Such dimerization is not found in the title compound, which contains uniform stacks of formally neutral gold(IV) radicals.

Experimental. Crystals of $\left[\mathrm{Au}(\mathrm{bdt})_{2}\right]^{0}$ were obtained by electrochemical oxidation ($3 \mu \mathrm{~A}$) in a standard H cell of the $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} .\left[\mathrm{Au}(\mathrm{bdt})_{2}\right]^{-}$salt. A platinum wire, which could be adjusted to keep only the tip in the electrolyte, was used as the anode. The crystals of best quality were obtained when grown from the tip of the electrode only throughout the entire electrolysis. A crystal of dimensions $0.30 \times 0.08 \times 0.03 \mathrm{~mm}$ was selected for study on an Enraf-Nonius CAD-4 diffractometer. The unit cell was derived from 25 reflections ($12.5<\theta<17.5^{\circ}$). X-ray intensity data

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52773 (52 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

